SEPT 2022 DIAGNOSIS LIST

22-0901: low grade stromal sarcoma (colon; GYN path)
22-0902: metastatic hepatocellular carcinoma (scalp; dermpath)
22-0903: dysgerminoma (ovary; GYN path)
22-0904: Merkel cell carcinoma in situ (skin; derm path)
22-0905: renal cell carcinoma with leiomyomatous stroma (kidney; GU path)
22-0906: malignant Brenner tumor (ovary; GYN path)
22-0907: clear cell renal cell carcinoma with granulomas (kidney; GUpath)
22-0908: clear cell renal cell carcinoma with megakaryocytes; clear cell renal cell carcinoma with multinucleate tumor cells (kidney; GU path)

22-0901

Armen Khararjian; Walnut Creek

Middle-aged F with sigmoid polyp.

CD10

Stromal Lesion Differential

- GIST: CKIT and DOG1 positive
- Leiomyoma: SMA and Desmin positive
- Schwannoma: S-100 positive
- Inflammatory Fibroid Polyp: CD34 positive
- Other

More History...

- Patient had history of hysterectomy five years prior for leiomyoma
- Slides re-reviewed with no evidence of ESS
- ? Unsampled primary in uterus

22-0902

Kristen Jensen; Palo Alto VA

70ish M transplant patient with enlarging scalp lesion (3.5cm), enlarged to size of "half a baseball" in less than 3 months. FNA performed.

Cutaneous metastatic HCC

- Rare, sites include scalp, head and neck, shoulders
- May show rapid growth
- Usually firm, non-ulcerated, reddish, painless
- Cyto-histo take-home point:
 - Melanoma mimic
 - Inclusions, pigment not specific to melanoma
 - History and IHC helpful

Morishita A et al. JGH Open. 2022 Apr 23;6(5):361-2.

22-0903

Ankur Sangoi; El Camino Hospital

20ish F with enlarged ovarian mass. Colleague asked to do frozen section on tumor consults you viable telepathology for assistance. Diagnosis?

DIAGNOSIS?

DDx of dysgerminoma

LYMPHOMA

- Smear prep: blue blobs not "tigroid"
- Lack admixed fibrovascular septae
- IHC: CD20+ OCT3/4-

CLEAR CELL CARCINOMA

- tubulocystic/papillary architecture
- IHC: PAX8+ NapsinA+ EMA+ OCT3/4-

SMALL CELL CARCINOMA HYPERCALCEMIC TYPE

- pseudofollicular spaces
- BRG1 aberrant loss EMA+ OCT3/4-

OTHER GERM CELL TUMORS

- other typical morphologies of embryonal carcinoma or yolk sac tumor
- IHC (embryonal carcinoma): CD30+ CD117-
- IHC (yolk sac tumor): glypican3+ OCT3/4- CD117-
22-0904

Greg Rumore; Kaiser Diablo

70ish F with pink scaly lesion right hand.

Merkel Cell Carcinoma

- Primary Neuroendocrine carcinoma of skin
- Sun exposed skin of elderly individuals
- Poor prognosis-50% 5 yr survival for localized cases
- 18% associated intraepidermal component

MCCIS

- Very rare (in pure form)
- In DDX of Pagetoid lesions-melanoma, extramammary Paget's, Bowen's, adnexal carcinomas
- Without invasive component appears to have good prognosis

22-0905

Direct link to scanned slide: <u>https://pathpresenter.net/public/display?token=21e1a5ef</u>

Patrick Mullane/Sunny Kao; Stanford

30ish F with incidentally-identified 1.5cm left renal mass discovered during work-up of Crohn's disease.

Morphologic Summary

• Architecture

- Well-circumscribed
- Solid/nodular
- Elongated branching tubules
- Well-formed papillae
- Fibromuscular bands, predominantly in the periphery

- Cytology
 - Clear to eosinophilic cells
 - Voluminous cytoplasm
 - Round, basally placed nuclei
 - Variably prominent nucleoli
 - Bland spindle cell in fibromuscular areas

- <u>IHC</u>
 - + CK7
 - + CA-IX
 - - cathepsin K

RCC with fibromyomatous stroma (RCC FMS)

- Novel entity
 - Distinct morphologic, immunohistochemical, and molecular features
- Stromal component is polyclonal and variable in extent
- Diffuse CK7 is typical, and required for the diagnosis
- Overlap morphology with ELOC (TCEB1) mutated tumors
- Recurrent TSC/MTOR mutations, both sporadic and hereditary
- Indolent behavior
 - Lymph node metastasis reported in rare cases associated with TSC

	RCC FMS	Clear cell RCC	Clear cell papillary renal cell tumor
Defining architectural features	 Nodules of elongated and branching tubules Variable fibromyomatous stroma 	 Compact acini/nests Delicate, intricately branching vasculature 	 Compact, abortive tubulo-papillary growth Thick capsule
Defining cytologic features	Clear to lightly eosinophilic cellsVoluminous apical cytoplasm	Clear cells	Scant clear cytoplasmAbluminal nuclei
CK7	Diffuse in all cases	Negative to focal	Diffuse in all cases
CA-IX	 Diffuse membranous, focally prominent "cup-shape" in about 50% 	Diffuse membranous	Diffuse "cup-shaped"
CD10	Positive	Positive	Negative
Molecular	TSC/MTOR mutation	• VHL and/or loss of 3p	• None

22-0906

Minami Tokuyama/Brooke Howitt; Stanford

60ish F with 15-20cm complex pelvic mass.

Gross

- Left adnexa weighing 1714g, measuring 19.5 x 16.3 x 10.0cm
- "Firm tan-white tissue with multiple cystic spaces containing green mucoid contents ranging from 0.4-2.0 cm in diameter"

Microscopic

- Transitional- like component and invasive squamoid component
- Malignant Brenner tumors are differentiated from their benign and low-grade counterparts by an invasive growth pattern and highgrade cytology

DDX

- "Transitional cell carcinoma"
- Borderline Brenner tumor (BLBT)
- Metastatic papillary urothelial carcinoma
- Endometrioid carcinoma
- Squamous cell carcinoma

Immunohistochemistry summary

Antigen	Result
CK7	Positive, negative in areas of squamoid morphology
СК20	Rare positive cells
р63	Positive
PAX8	Negative
р53	Wild type
HPV ISH	Negative
p16	Negative
GATA3	Overall faint with stronger staining in the malignant component
TPRS1	Negative
ER	Negative
PR	Negative
WT1	Negative
MSI	All intact (MSH2, MSH6, PMS2, MLH1)

Epidemiology and Clinical Correlates

- Incidence
 - Rare
 - <5% of Brenner tumors
 - <1% of all ovarian tumors
- Clinical
 - Unilateral (90%)
 - Postmenopausal (mean = 65 years)
 - 80% are stage I at diagnosis
 - 5-year survival of 77-94.5% at stage IA

[•] Cuatrecasas, Miriam, et al. "Transitional cell tumors of the ovary: a comparative clinicopathologic, immunohistochemical, and molecular genetic analysis of Brenner tumors and transitional cell carcinomas." The American journal of surgical pathology 33.4 (2009): 556-567.

[•] Kurman, R. J., et al. "WHO classification of tumours of the female reproductive organs (IARC WHO Classification of Tumours)." *World Health Organization* (2014): 1-309.

[•] Nasioudis, Dimitrios, et al. "Malignant Brenner tumors of the ovary; a population-based analysis." Gynecologic oncology 142.1 (2016): 44-49.

MDM2 and cell cycle regulation

- MDM2 is a negative regulator of p53
- It binds to p53 resulting in its export from the nucleus and subsequent degradation
- It has been shown to be upregulated in some tumors (sarcomas and breast cancer)
- Has been investigated as potential therapeutic target, particularly in cases with wild type p53

- Burgess, Andrew, et al. "Clinical overview of MDM2/X-targeted therapies." Frontiers in oncology 6 (2016): 7.
- Haupt, Ygal, et al. "Mdm2 promotes the rapid degradation of p53." Nature 387.6630 (1997): 296-299.

[•] Urso, Loredana, et al. "Critical review about MDM2 in cancer: Possible role in malignant mesothelioma and implications for treatment." Critical reviews in oncology/hematology 97 (2016): 220-230.

MDM2 and Brenner Tumors

- MDM2 gene amplification was recently detected in malignant Brenner tumors (MBTs), but not ovarian carcinomas with transitional cell histology
- A subsequent study showed this amplification appears specific to MBTs (3/4) while absent in BLBTs (0/3) and benign Brenner tumors (0/26)
 - Positive: diffuse nuclear staining in >25% of cells
 - Equivocal: 10-25% of cells
 - Negative: <10% of cells
 - FISH confirmed amplification in all cases positive by IHC (3/4 MBTs). In cases of equivocal staining (1/4 MBT, 2/3 BLBTs), MDM2 amplification was negative by FISH.
- In the same study, all high-grade serous carcinomas (n=142), ovarian endometroid carcinomas with urothelial-like morphology (n=6) and highgrade urothelial carcinomas (n=49) were negative for MDM2 amplification

[•] Wang, Lucy, Douglas Allison, and Pratibha Sharma Shukla. "Amplification of MDM2 and Loss of p16 expression: do they have a role in malignant transformation of ovarian brenner tumor? A morphologic and immunohistochemical study." *American Journal of Clinical Pathology* 154.1 (2020): 133-141.

MDM2 IHC and FISH

Conclusion

- MDM2 amplification distinguishes malignant Brenner tumors from their low-grade and benign counter parts as well as from non-Brenner malignancies with similar morphology
- MDM2 represents a potential diagnostic tool in cases where the diagnosis is unclear by H&E alone
- MDM2 amplification can be visualized by IHC and can be confirmed by FISH or in cases where the MDM2 IHC is equivocal

22-0907 Direct link to scanned slide: https://pathpresenter.net/public/display?token=d8d12371

Ankur Sangoi; El Camino Hospital

Middle-aged M with 4cm renal mass, nephrectomy. What is the clinical significance of indicated areas?

What is the clinical significance of indicated areas?

Is this finding a risk for sarcoidosis or not?

RCC with granulomas: histologic risk factors for sarcoid?

- # of granulomas?
- Size of granulomas?
- Intratumor vs peritumoral granulomas?
- Granulomas +/- with necrosis?

Histopathology

Histopathology 2022, 80, 922-927. DOI: 10.1111/his.14633

Granulomas associated with renal neoplasms: A multiinstitutional clinicopathological study of 111 cases

Ankur R Sangoi, ¹ Fiona Maclean, ² Sambit Mohanty, ³ Ondrej Hes, ⁴ Reba Daniel, ⁵ Priti Lal, ⁵ Sofia Canete-Portillo, ⁶ Cristina Magi-Galluzzi, ⁶ Kristine M Cornejo, ⁷ Katrina Collins, ⁸ Michael Hwang, ⁸ Sara M Falzarano, ⁹ Mike M Feely, ⁹ Melad Dababneh, ¹⁰ Lara Harik, ¹⁰ Maria Tretiakova, ¹¹ Mahmut Akgul, ¹² Varsha Manucha, ¹³ Emily Chan, ¹⁴ Chia-Sui Kao, ¹⁵ Farshid Siadat, ¹⁶ Kanika Arora, ¹⁷ Guliz Barkan, ¹⁸ Liang Cheng, ⁸ Michelle Hirsch, ¹⁹ Li Lei, ²⁰ Matthew Wasco, ²¹ Sean R Williamson ²² & Andres M Acosta ¹⁹ ¹⁰

Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA, ⁸Indiana University, Pathology, Indianapolis, IN, USA, ⁹Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA, ¹⁰Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA, ¹¹University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA, USA, ¹²Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY, USA, ¹³Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA, ¹⁴Department of Pathology, University of California San Francisco, San Francisco, CA, USA, ¹⁵Stanford Medical Center, Stanford, CA, USA, ¹⁶Department of Pathology and Laboratory Medicine, Cumming School of Medicine,University of Calgary, Calgary, AL, Canada, ¹⁷Department of Pathology, Henry Ford Hospital, Detroit, MI, USA, ¹⁸Loyola University Healthcare Center, Department of Pathology, Maywood, IL, USA, ¹⁹Department of Pathology, Brigham and Women's Hospital,Harvard Medical School, Boston, MA, USA, ²⁰Department of Pathology and Laboratory Medicine, University of California Davis Health System, Sacramento, CA, USA, ²¹St Joseph Mercy Hospital, Ann Arbor, MI, USA, and ²²Department of Pathology, Cleveland Clinic, Cleveland, OH, USA

Date of submission 13 January 2022 Accepted for publication 23 February 2022 Published online Article Accepted 29 March 2022

Study	No. of cases	Renal tumour(s)	Renal tumour subtype(s)	Distribution of granulomas	Sarcoidosis*
Campbell et al.	1	RCC	Clear cell RCC	Intratumoral	None
Bottone <i>et al</i> .	1	RCC	Clear cell RCC	Peritumoral	1/1 (100%)
Marinides et al.	1	RCC	Papillary RCC	Peritumoral	None
Hes et al.	3	RCC	Clear cell RCC	Intratumoral	None
Kovacs <i>et al</i> .	1	RCC	Clear cell RCC	Intratumoral/peritumoral	None
Piscioli <i>et al</i>	1	RCC	Clear cell RCC	Peritumoral	None
Narasimhaiah <i>et al</i> .	3	RCC	Clear cell RCC	Intratumoral	None
Ouellet <i>et al</i> .	1	RCC	Clear cell RCC	Peritumoral	None
Burhan <i>et al</i> .	1	RCC	Clear cell RCC	Intratumoral	None
Khatua <i>et al.</i>	1	RCC	Clear cell RCC	Peritumoral	None
Arora <i>et al.</i>	11	RCC	Clear cell RCC ($n = 10$),	Intratumoral/peritumoral	1/11 (11%)
			Clear cell papillary RCC (n = 1)		
Majeed <i>et al</i> .	2	RCC	Clear cell RCC ($n = 1$),	Intratumoral/peritumoral	2/2 (100%)
		MCNLMP	MCNLMP ($n = 1$)		
Tarjan <i>et al</i> .	1	AML	AML	Unknown [†]	None
Current study	111	RCC, MEST, oncocytoma	Clear cell RCC ($n = 95$), papillary RCC ($n = 9$),	Intratumoral/peritumoral	11/111 (10%)‡
			Chromophobe RCC ($n = 3$), clear cell papillary RCC ($n = 2$), MEST ($n = 1$), oncocytoma ($n = 1$)		

Table 1. Previously published studies of granulomas associated with renal neoplasms

Granulomas associated with renal tumors

- 111 cases (57 partial, 54 radical)
 - Wide age range, mixed M/F gender
- Usually CC-RCC (86%)
 - Can occur in benign renal tumors as well
- 10% had associated sarcoidosis
 - 5% diagnosed after nephrectomy finding of granulomas
- Wide range of # and size of granulomas per case
 - Can be peri OR intratumoral
- 14% had necrosis
 - Not specific for sarcoidosis association
- 14% had prior procedure
- 7% had prior chemo or immunotherapy

Take home points

- peri/intratumoral granulomas associated with renal neoplasms may be more common than initially perceived
- Extent of granulomatous inflammation can vary widely
 - +/- have necrosis
 - possible etiologies include prior procedure or immunotherapy/chemotherapy
- Although a clinical association with sarcoidosis is infrequent it can still occur

- warrants mentioning in pathology reports

22-0908

Ankur Sangoi; El Camino Hospital

Sections from 2 different renal masses shown from 2 different nephrectomies. What nuclear grade would you render for each case?

900 #
G. FO

2

ogeo

- GRADE 2?
- GRADE 3?
- GRADE 4?

- GRADE 2?
- GRADE 3?
- GRADE 4?

• GRADE 2

With EMH(megakaryocytes)

Human Pathology (2014) 45, 1306-1309

Case study

www.elsevier.com/locate/humpath

Clear cell renal cell carcinoma with intratumoral and nodal extramedullary megakaryopoiesis: a potential diagnostic pitfall

Sean R. Williamson MD^{a,*}, Kelley J. Mast MD^b, Liang Cheng MD^{c,d}, Muhammad T. Idrees MD^c

^aDepartment of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, MI 48202 ^bDepartment of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 ^cDepartments of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 ^dDepartment of Urology, Indiana University School of Medicine, Indianapolis, IN 46202</sup>

Received 14 September 2013; revised 30 November 2013; accepted 8 January 2014

Summary Clear cell renal cell carcinoma is occasionally associated with erythrocytosis, hypothesized to result from tumoral production of erythropoietin. Rarely, intratumoral erythropoiesis has been identified, although intratumoral megakaryopoiesis has not, to our knowledge, been previously described. We report the case of an 81-year-old man with myelofibrosis who underwent resection of a 9.8-cm clear cell renal cell carcinoma. Numerous megakaryocytes were present within the renal cell carcinoma; regional lymph nodes; and, to a lesser extent, the nonneoplastic kidney, glomeruli, and renal hilar soft tissue, in some areas associated with trilineage hematopoiesis. Immunohistochemistry verified the megakaryocytic lineage of the atypical cells (CD61, CD42b, and von Willebrand factor +; cytokeratin –). Intratumoral extramedullary megakaryopoiesis is a novel finding in clear cell renal cell carcinoma with potential to mimic high-grade carcinoma and involvement of lymph nodes. Careful attention to morphology, presence of other hematopoietic elements, and immunoprofile can facilitate recognition of this rare phenomenon. © 2014 Elsevier Inc. All rights reserved.

- GRADE 3? (syncytial type tumor giant cells)
- GRADE 4? (multinucleate tumor giant cells)

Human Pathology (2014) 45, 735-744

Human PATHOLOGY

www.elsevier.com/locate/humpath

Original contribution

Clear cell renal cell carcinoma with a syncytial-type multinucleated giant tumor cell component: implications for differential diagnosis

Sean R. Williamson MD^{a, b,*}, Jennifer B. Kum MD^a, Michael P. Goheen BA, CEMT^a, Liang Cheng MD^{a,c}, David J. Grignon MD^a, Muhammad T. Idrees MD^a

^aDepartment of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 ^bDepartment of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, MI 48202 ^cDepartment of Urology, Indiana University School of Medicine, Indianapolis, IN 46202

Received 22 August 2013; revised 24 October 2013; accepted 30 October 2013

Keywords:

Renal cell carcinoma; Immunohistochemistry: Syncytial giant cells; Emperipolesis; Hyaline globules

Summary A component of syncytial-type multinucleated tumor giant cells is uncommon in clear cell renal cell carcinoma, and the histogenesis, incidence, and clinical implications of this finding are not well understood. We retrieved 13 such tumors from our pathology archives in patients with a median age of 60 years, comprising 1.5% of clear cell renal cell carcinomas. Stage was typically pT4 or pT3 (each 38%). Microscopically, all tumors included a component of low-grade clear cell renal cell carcinoma with usual features. Syncytial-type giant tumor cells possessed voluminous cytoplasm, usually granular and eosinophilic, and numerous nuclei similar to those of the mononuclear tumor cells. Transition between areas of mononuclear and multinucleated cells was sometimes abrupt. Other findings included necrosis (77%), hyaline globules (46%), emperipolesis (46%), and intranuclear cytoplasmic invaginations (23%). Immunohistochemical staining typically revealed both mononuclear and multinucleated cells to be positive for carbonic anhydrase IX, CD10, epithelial membrane antigen, vimentin, and cytokeratin AE1/AE3 and negative for β human chorionic gonadotropin, TFE3, cathepsin K, cytokeratin 7, cytokeratin 20, HMB45, CD68, smooth muscle actin, and S100. Most patients with available information (7/9) were alive with metastatic disease at the most recent follow-up. Syncytialtype giant cells are an uncommon finding associated with aggressive clear cell renal cell carcinomas. Despite the unusual appearance of this tumor component, its immunoprofile supports an epithelial lineage and argues against trophoblastic, osteoclast-like, or histiocytic differentiation. Reactivity for typical clear cell renal cell carcinoma antigens facilitates discrimination from giant cells of epithelioid angiomyolipoma or other tumors, particularly in a biopsy specimen or a metastatic tumor. © 2014 Elsevier Inc. All rights reserved

WHO/ISUP grading for clear cell & papillary RCC

<u>Grade 1</u>: nucleoli absent/inconspicuous at x400

<u>Grade 2</u>: nucleoli conspicuous & eosinophilic at x400, visible but not prominent at x100

Grade 3: nucleoli conspicuous & eosinophilic at x100

RCC-GRADING

<u>Grade 4:</u> extreme nuclear pleomorphism, multinucleate giant cells, rhabdoid/sarcomatoid diff

To grade or not to WHO/ISUP grade?

- RCC subtype validated – Clear cell RCC, papillary RCC
- Not applicable
 - Chromophobe RCC, TFE3 RCC
- Grading potentially useful
 - TFEB RCC, SDH-def RCC, MTSCC, TCEB1mut RCC, FH-def RCC, RCC unclassified
- Not useful b/c known to be aggressive
 Collecting duct ca, medullary ca

Paner GP et al. Updates in Grading of Renal Cell Carcinomas Beyond Clear Cell Renal Cell Carcinoma and Papillary Renal Cell Carcinoma. Adv Anat Pathol. 2022 May 1;29(3):117-130.

To grade or not to WHO/ISUP grade?

- Grading potential misleading

 Tubulocystic RCC, ACD-RCC, ESC RCC, EVT
- Grading essential for histologic Dx
 - Papillary adenoma
 - MCN LMP, clear cell pap RCC
- Limited or no data on grading
 - ALK RCC
 - -LOT
 - Thyroid like follicular RCC

Rhabdoid differentiation

 Adverse prognostic factor in clear cell RCC (WHO/ISUP grade 4 by definition)

Przybycin CG, McKenney JK, Reynolds JP, Campbell S, Zhou M, Karafa MT, Magi-Galluzzi C. Rhabdoid differentiation is associated with aggressive behavior in renal cell carcinoma: a clinicopathologic analysis of 76 cases with clinical follow-up. Am J Surg Pathol. 2014 Sep;38(9):1260-5.

Tumor cell necrosis

 Independent prognostic outcome for clear cell RCC

Sengupta S, Lohse CM, Leibovich BC, Frank I, Thompson RH, Webster WS, Zincke H, Blute ML, Cheville JC, Kwon ED. Histologic coagulative tumor necrosis as a prognostic indicator of renal cell carcinoma aggressiveness. Cancer. 2005 Aug 1;104(3):511-20.

vs infarct-type necrosis (papillary RCC)

